
hr. J. Heat Moss Thmvfer. Vol. 12, pp. 445458. Pergamon Press 1969. Printed in Great Britain 

A SUBSTITUTE-KERNEL APPROXIMATION FOR 

RADIATIVE TRANSFER IN A NONGREY GAS NEAR 

EQUILIBRIUM, WITH APPLICATION TO RADIATIVE 

ACOUSTICS 

SCOTT E. GILLES,? ALLEN C. COGLEYf and WALTER G. YINCENTI 4 

Department of Aeronautics and Astronautics, Stanford University, Stanford, California 

(Received 24 October 1968) 

Abatraet-The equations for radiative transfer in plane-parallel geometries are studied for a nongrey gas 
near equilibrium. Local thermodynamic equilibrium is assumed in the molecular processes. On the 
supposition that deviations from a reference state of radiative equilibrium are small, the equation of 
radiative transfer is linearized. This allows the required integrations over space and spectral frequency 
to be carried out independently. In analogy to the grey-gas procedures, a nongrey substitute-kernel (or 
exponential) approximation is then made for certain frequency-integrated transmission functions that 
occur in the expressions for the heat fluxes. This leads to a purely differential equation for the net radiative 
flux. The spectral properties appear in the formulation in two functions, which are introduced by the 
approximation and which depend on the reference state of the gas. These functions are found by analytical 
matching procedures, which define linearized Planck- and Rosseland-like mean absorption coefficients 
that are physically meaningful for a general nongrey gas. For use in radiative acoustics, the differential 
equation for the heat flux is coupled with the linearizedequations of gas dynamics, The resulting nongrey 
equations have the same mathematical structure as the grey equations, which are now contained as a 
special case. The results of existing grey-gas solutions can therefore be reinterpreted in terms of a nongrey 

gas by an appropriate normalization. 
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exponential-integral function [see 
equation (8)]; 
frequency-integrated transmission 
function [see equations (14) and 

W)]; 
specific enthalpy ; 
specific intensity ; 
direction cosine of direction of radi- 
ative propagation ; 
functions in the nongrey substitute- 
kernel approximation [see equation 

(WI ; 
pressure ; 
one-sided radiant heat fluxes per 
unit frequency ; 
one-sided radiant heat fluxes ; 
net radiant heat flux, QR+ - Q!! ; 
temperature ; 
time ; 
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velocity ; 
space coordinate ; 
general argument of a function ; 
spectral absorption coefftcient ; 
grey absorption coefficient ; 
linear Planck mean emission co- 
efficient ; 
Rosseland mean absorption co- 
efficient ; 
spectral frequency ; 
normalized. space coordinate [see 
equation (35)] ; 
density ; 
normalized time [see equation (35)J ; 
potential function. 

quantity pertaining to the wall ; 
evaluated at the reference condition. 

Superscripts 

( )‘, perturbation quantity; 

(I> quantity restricted to certain fre- 
quency ranges by the integration 
convention [see equation (IO)] ; 

03 normalized quantity [see equation 

(35)l. 

1. INTRODUCTION 

THE ASSUMPTION of a grey gas, though useful for 
exploratory purposes, does not lead to a suffi- 
ciently accurate description of radiative transfer 
for current experimental and theoretical studies 
of radiatively driven acoustic waves [l, 21. The 
present theory has therefore been formulated to 
retain the essentially nongrey character of the 
transfer problem, while remaining simple 
enough for analytical solution of the resulting 
acoustic equations. The basic formulation is 
also applicable, however, to any plane-parallel 
transfer problem, static or dynamic, in which the 
temperature and density variations within the 
gas are small enough to allow linearization 
about an equilibrium reference state. The 
equations appropriate for such general applica- 
tion are therefore developed first without refer- 

ence to gas dynamics. The acoustic theory that 
gave the original motivation is then discussed 
at the end. 

The development assumes (see, for example, 
Vincenti and Kruger [3]) that nonequilibrium 
effects from all purely molecular processes are 
negligible. The radiative effects are thus taken 
into account on the hypothesis of local thermo- 
dynamic equilibrium.~ Radiative scattering is 
neglected as being small in the applications in 
which we are ultimately interested. To fix the 
problem, the geometrical configuration is taken 
to be that of a semi-infinite expanse of radiating 
gas to the right of an infinite, plane, radiating 
black wall. 

On the assumption that deviations from 
radiative equilibrium are small, the equation of 
radiative transfer is first linearized about an 
equilibrium reference state. This allows the 
necessary integrations over space and spectra1 
frequency to be carried out independently. This 
fact was apparently first noted by Baldwin [5] 
but was not fully exploited by him. Certain of 
the present ideas in embryonic form have also 
appeared in the work by Ryhming [6], who 
considered acoustic propagation in a gas radia- 
ting in a grey band (absorption coefficient 
constant over a finite range of frequency). The 
following formulation, however, places no re- 
strictions on the absorption coefficient. 

Following the above integrations, the ex- 
pression for the radiative heat flux appears in 
integral form. A nongrey substitute-kernel (or 
exponential) approximation is then made for 
certain frequency-integrated transmission func- 
tions, which account for both the spectral and 
directional properties of the radiative field. As 
in the analogous procedure for a grey gas, this 
approximation leads to a purely differential 
equation for the heat flux. This second-order 

-- -.-.- 
t The nongrey substitute-kernel approximation, which 

will be central to the formulation, is not limited to gases in 
local thermodynamic equilibrium and has been employed 
by Gilles [4] in a theory for coupled radiative and vibra- 
tional nonequilibrium. As an example of a nonacoustic 
application, it is used there to obtain a perturbation solution 
for steady flow through a normal shock wave. 
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equation contains the grey-gas equation as a 
special case and has, in fact, the identical 
mathematical structure as the grey equation. 
The same can be said regarding the radiative 
boundary condition, which is also derived. By 
introduction of an appropriate normalization, 
the present results can therefore be used to 
reinterpret, for a nongrey gas, many of the 
previous grey-gas solutions. 

The nongrey substitute-kernel approximation 
introduces two functions denoted by m,(p,, T,) 
and n,(p,, T’,), where pO and TO are the un- 
disturbed density and temperature, respectively. 
These functions can be related analytically or 
numerically to the spectral properties of the gas. 
They can be eliminated formally from the final 
equations through the definition of the norma- 
lized variables. To obtain results in terms of the 
physical variables, however, requires their speci- 
fication. In the present work, this is done 
analytically by matching certain properties (i.e. 
zero intercept, area, or first moment) of the 
approximate exponential kernel to those of the 
corresponding exact transmission function. This 
results in the definition of linearized Planck- 
and Rosseland-like mean absorption coefficients 
that are physically meaningful for a general 
nongrey gas. For a gas in which the absorption 
coefficient is nonzero at all frequencies, these 

frequency-averaged coefficients reduce to the 
ordinary linearized Planck and Rosseland means 
discussed by Cogley, Vincenti and Gilles [7]. 

For application in radiative acoustics, the 
differential equation governing the radiative 
heat flux is finally coupled with the linearized 
equations of gas dynamics. This leads to a 
single fifth-order partial differential equation 
for a perturbation potential function. This 
equation and the corresponding radiative 
boundary condition also contain their grey-gas 
counterparts, with which they share a common 
mathematical structure. 

2. EQUATIONS OF RADIATIVE TRANSFER 

NEAR EQUILIBRIUM 

The coordinate system is shown in Fig. 1. The 
equation governing the frequency-dependent 
specific intensity I, can be written, with the 
relatively small time-derivative term omitted, as 
(see, for example, [3]) 

z% = a,[B, - I”] 

Here the subscript denotes values at the spectral 
frequency v; a, is the volumetric absorption co- 
efficient, B, the Planck function, 1 = cos 4 the 
direction cosine of the direction of radiative 

Direction of 
propagation 

FIG. 1. Coordinate system. 
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propagation, and x the space coordinate normal 
to the wall. Equation (1) can be linearized about 
a reference state of radiative equilibrium to 
obtain the following equation for the perturba- 
tion specific intensity Zi : 

, al: - = a,,[B: - rq. 
dx 

Subscript 0 denotes the equilibrium reference 
condition, and the primed quantities are small 
perturbations defined by Z, = I,, + ZV = B,, i- 
TV and B, = B,, + BV = B,, + dB,/dT I0 T’, 
where T is the temperature. 

Implicit in our employment of a condition of 
radiative equilibrium for a semi-infinite expanse 
of gas is the notion that equations (2) through 
(7) are written only for those spectral frequencies 
for which cl_, # 0. Within such absorbing and 
emitting “bands,” radiative equilibrium can 
exist, and the reference intensity is justifiably 
taken as B,, irrespective of the direction 1. For 
frequencies at which tl,, = 0, true equilib~um 
can not exist, since in the absence of a wall on 
the right there is no mechanism for emission at 
such frequencies in directions I < 0. B,, is 
therefore not available as a reference in those 
directions. Such frequencies, however, are of no 
interest to us (even for E > 0), since they entail 
no coupling between the radiation and the gas. 
A frequency-integration convention will be 
introduced later that takes care of this matter in 

where 2 is the running variable of integration 
and the subscript w denotes quantities pertaining 
to the wall. The solution is written in two parts 
because of the different boundary conditions on 
ZV for different ranges of f. For propagation 
away from the wall (I > 0), we have I:(x,,,, r) = 
dB,/dT I,, TL, since the wall is assumed to 
radiate as a black body. For propagation 
toward the wall (I < 0), the boundary condition 
is Il(co, I) = 0, since all perturbation quantities 
are taken to be zero at infinity. 

The perturbations in the one-sided radiant 
heat fluxes per unit frequency for the positive 
and negative directions, respectively, are defined 

by (cf. [33, P. 441) 

and 

Q;; = -2n :r, ZI:(x,Z > 0)dZ (4) 

Qf; = 2n i1 1 I:@, 1 < 0) dl. (5) 

Substituting solutions (3a, b) into equations (4) 
and (5) and carrying out mathematical details 
similar to those described in [3], p. 481, we 
obtain 

TwE,[a,,(x .- x,)] 

an automatic way. 
The formal solution of equation (2) can be 

written (cf. [3], p. 481) 
and 

Z:(x, 1 > 0) = Iv(xw, 1) exp [ --Jx - x,)/Z] 
Qt’_ = 27~ 

T’ exp [-a,,& - 2)/E) dZ/l 
X 

0 
where the exponential-integral 

xw 

(34 
defined by 

1 

- x)] dA 
1 

, (7) 

functions are 

and E,(z) z j exp (-z/Z) Pm2 dl, (n an integer). (8) 
c0 0 

I:(x,E<O)= - These functions satisfy the recurrence formula 

ex,’ [-LX& - @/Z] dX/l, 
d Em(z) 

(3b) 
- = -E,_ I(zf. 

dz (9) 
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We must now integrate equations (6) and (7) 
over frequency. To do this we introduce the 
integration convention 

(10) 

where the notation a,,,, # 0 signifies an integra- 
tion over all frequencies for which a,, is nonzero. 
In the special situation where a,o is nonzero for 
all v, we have the correspondence 

o1 lo’ )dv “‘=a( )dv. (11) 
.0 

The foregoing integration convention auto- 
matically selects that part of the perturbed 
emission from the black wall (the first term in 
equation (6)) that can interact with the gas. Wall 
emission at frequencies at which a,, = 0 can 
never be absorbed by the gas and hence is of no 
consequence in determining the thermodynamic 
state of the gas. 

The integration convention (10) is general and 
implies no restrictive assumptions concerning 
the absorption characteristics of the gas. The 
limits of the frequency integration are free to be 
set in each particular case by the nature of the 
absorption coefficient. The convention also 
allows all the usual mathematical manipulations 
of the resulting equations because their singular 
nature for a,, = 0 has been eliminated. Still 
other reasons for introducing the convention 
are concerned with the substitute-kernel 
approximation and will be more easily under- 
stood in that context. 

We now integrate equations (6) and (7) over 
frequency according to the convention (10). The 
frequency-integrated one-sided perturbation 
heat fluxes in the range a, # 0 are then 

and 

- x)] dv dR 
I 1 

, (13) 

where x, has been taken as zero fo; convenience. 
The integration over frequency has been inter- 
changed with that over 2 in these equations to 
emphasize that the frequency integration can be 
carried out independently of the perturbations 
in the gas. This possibility is unique to the near- 
equilibrium situation, in which all frequency- 
dependent quantities are evaluated at the equi- 
librium reference state. When the gas is far from 
equilibrium, the corresponding nonlinear equa- 
tions depend explicitly on B, and a,, which are 
functions of position as well as frequency. The 
integrations over the two variables can not then 
be carried out independently, as they can for the 
linearized equations. 

We can exploit the independence of the 
frequency integration by defining the trans- 
mission functions 

and 

F,(z; PO, r,) = k dBv s I do Ua,,z) dv. 
0 

a,-# 0 

(15) 

The quantity 8,,, in these equations is defined by 

where c is the Stefan-Boltzmann constant. As a 
consequence of the recurrence formula (9), the 
functions F, satisfy a similar relation, that is, 

dF,(z) 
- = -F,_,(z). 

dz (17) 
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Equations (12) and (13) can now be written in Fz has a strong dependence on E,, Baldwin [5] 
the more compact form suggested (although in a different formalism) 

&’ = 2n &,(T&(x) + a T”F,(x - 2) dx”), 
that F, be replaced in analogous fashion. 
Following this suggestion, we therefore intro* 

and 

fl8) 
duce the approximation 

&(a; po3 T,) 2 ~o(~o, To) exp { - no(~,, TJ z>, 

(20) 

@’ = 27c &{ 7 T’F& - x) dn}. (19) where the dependence on.po and To is included 
x in the functions m, and no, which thus have 

The definitions (14) and (15) of F, and F, 
fixed values for any given reference condition. 

cause equations (18) and (19) to look formally 
These functions represent, in effect, some as yet 

like their grey-gas counterparts. In particular, 
undefined, frequency-averaged emission and 

F,, F,, and 8,, correspond respectively to 
absorption ~oefflcients, respectively. In order 

cloE,(ol,z), E,(a,z), and B,, = &T$n, where rxO 
that the substitute kernel will satisfy the 

is the grey absorption coefficient. In fact, the 
recurrence formula (l’?), we correspondingly 

former quantities reduce directly to the latter replace F, by 

when CY,,~ = a, = constant for all v in equations 
(14), (15), and (16). The nongrey formulation F,(z; po, To) z Ff e-“Oz. (21) 
thus contains the grey formulation as a special 
case. Moreover, the mathematical structure of We note in passing that it is the introduction 

the nongrey equations is the same as for the of the inte~ation convention (10) that makes it 

grey equations. The implications of this will be possible to replace F3 by a pure exponential. If 

discussed at the end of the next section. we had integrated from 0 to co, the counterpart 

The transmission functions Fz and F, can be of F, would have been defined and its ex- 

computed numerically, given data for a,,@,, To). ponential approximation written (since E,(O) = 

They incorporate both the spectral and direc- $) as 

tional character of the radiative field into 
equations (18) and (19), irrespective of the 
variations in temperature. The expressions for 
the fluxes, however, are still in integral form. To m,,=O 

obtain analytical solutions, particularly of the 
resulting acoustic equations, it is desirable to 
have the flux described by a purely differential 

%ZO 

equation. A substitute-kernel approximation 
for the nongrey gas will therefore be introduced. 

3. NONGREY SUBSMTUTE-KERNEL The function ATo) in effect accounts for that 
APPROXIMATION portion of the radiant heat flux from the black 

In grey-gas theory, a widely and successfully wall that cannot interact with the gas and thus 
used approximation is to replace the ex- does not enter into the present formulation. 
ponential-integral kernel Ez by a purely ex- Definition (10) aliows us to dispense with this 
ponential function according to E,(cr,z) E a unessential function. 
exp ( -baoz), where a and b are dimensionless The accuracy of the approximation (20) 
constants. Noting that the transmission function depends, of course, on how well a pure ex- 
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ponential, with suitable choice of m, and n,, 
can represent the exact frequency-integrated 
transmission function. In principle, m, and n, 
could be determined by fitting the exponential 
(20) (e.g. by a least-squares method) to the 
results of a numerical calculation of F,. Instead, 
we present in the next section an analytical 
matching procedure that will express m, and n, 
in terms of the aforementioned frequency- 
averaged emission and absorption coefficients. 
In either event, since m, and n, would most 
likely have to be evaluated specially for each 
different reference condition, the nongrey sub- 
stitute-kernel approximation is different from 
the analogous approximation for a grey gas. In 
the latter case, E, is a function solely of the 
product a,z; the dependence on the physical 
state of the gas is absorbed into this generalized 
argument through the value of a,, (which must 
then be chosen on the basis of independent 
arguments). A general comparison of E, with 
its exponential approximation in terms of this 
generalized argument is therefore possible for a 
grey gas (see [3], p. 484, Fig. 2). Such com- 
parison cannot be made for the nongrey sub- 
stitute-kernel approximation. 

The present formulation is different from that 
for a grey gas in another important aspect. The 
nongrey substitute-kernel approximation con- 
tains the two parameters m, and n, and the 
integration convention (lo), which together 
allow us to characterize the absorption co- 
efficient and radiative emis_ion for a nongrey 
gas; that is, n, and 47~n,&-~TI represent the 
absorption coefticient and the rate of spon- 
taneous emission per unit volume, respectively 
(see, for example, equation (25) below). The 
grey substitute-kernel approximation, on the 
other hand, contains only the one parameter ao, 
the grey absorption coefficient; the grey spon- 
taneous emission follows necessarily as 
4nua&.,T’ = 16aa,oTzT’. (The constants a 
and b in the grey substitute kernel must be of 
order unity and reflect the behavior of the 
function E,, not the spectral properties of the 
gas.) We thus have in the present formulation 

more freedom with which to represent the 
radiative properties of the gas. 

If, in the interest of greater accuracy, a sum of 
exponentials were assumed in place of the 
approximation (20) (e.g. F,(z; pO, T,) g 1 m,, 

exp ( - nojz)), an essentially many-parametjer lit 
could be obtained for the transmission function.? 
One can, of course, also retain additional ex- 
ponential terms in the grey-gas formulation, 
giving a many-parameter tit to the function Ez 
(or more precisely a&). This does not, however, 
alter the fact that a,E,(a,z) is itself a poor 
approximation to begin with for the correct 
transmission function for a nongrey gas. 

With the substitute-kernel approximation, 
equations (18) and (19) become 

x 

&“+I = 27& + T’m, 
s 
0 

exp [ - n,(x - %)I dZ (22) 

and 

@? = 2n.&,,{ 7 T’m, exp [-no@ - x)] dn}. 
X 

(23) 

Instead of these one-sided heat fluxes, it will be 
more convenient to deal with the net heat flux 
0s’ = p+’ - @‘. This is because we are in- 
terested primarily in the derivative &j”‘/ax, 
which gives the net energy lost by the gas per 
unit volume. The equations for OR’ and @“‘/ax 
follow from equations (22) and (23) as 

+ 
s 

T’m, exp [ - n,(x - Z)] dR 

0 

t This procedure has been carried through and leads to a 
higher-order partial differential equation than the one 
obtained here (two orders higher for each additional ex- 
ponential retained). 
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7 > 
- T’mO exp [ - n,(Z - x)] dZ 

X 

and 

i3qR’ 

ax= 
- 27cB,, 

(24) 

+ 
s 

T’m,n,exp[-n,,lR - xJ]dg - 2m,T’ . 

0 

(251 

As in the grey-gas case, the radiative-transfer 
problem can now be formulated in purely 
differential form. For this we need the second 
derivative of gR’, which is 

+ 
s 

T’moni exp [ - n,(x - jz)] dJ 

0 

- 
s 

T’m,ni exp [-no@ - x)] dB 

x 

(26) 

Subtracting ni times equation (24) from equa- 
tion (26) then results in 

lY2gR’ ~ - 
8x2 

4nm,B,,g - n;Q”’ = 0, (27) 

which is a purely differential equation governing 
the net radiative heat flux QR’. 

The appropriate radiative boundary condition 
at x = 0 can be found by evaluating equations 
(24) and (25) at x = 0. Doing this and eliminating 
the integral term between the resulting equa- 
tions, we obtain 

[~-no4R]x=o= - 4nm,&.,( Tk - T: = o). 

(28) 

Equation (28) relates the heat flux at the wall to 

the temperature jump (Tk - T:=,). If we 
examine the physical meaning of each term in 
the equations leading to this relation, we find 
that it expresses the energy balance for an 
element of gas at x = 0. Our ability to write 
the energy balance as equation (28) is, of course, 
a consequence of the substitute-kernel approxi- 
mation. 

By working with the one-sided heat fluxes, we 
can obtain the radiative boundary condition 
from a different argument. We begin by evalua- 
tmg the exact one-sided flux at the wall from 
equation (18). This gives 

p+’ lXzo = 27&T;F3(0) = n&T;. (29) 

This is then used in conjunction with the 
relation QR’ = Q”+ - @’ and equations (23) and 
(25) all evaluated at x = 0, to obtain 

= -2nm,B,, . 

(30) 

The different approaches thus lead to different 
boundary conditions. Equations (28) and (30) 
become identical, however, when ma/no = 3. 
The conditions under which this equality holds 
will be discussed in the next section. 

The difference between the two radiative 
boundary conditions is due to the way in which 
the substitute-kernel approximation has been 
applied in the two cases. To obtain equation 
(28) the approximation was applied formally 
throughout, i.e. the approximate equations (24) 
and (25) were used in a purely formal manner. 
Equation (30), on the other hand, was obtained 
from the exact relation (29) plus the approximate 
equations (23) and (25). This points out the type 
of internal inconsistency that can arise in the 
radiative equations when the substitute-kernel 
approximation is applied in different ways. We 
consider the formal application of the approxi- 
mation to be the more self-consistent. We 
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therefore adopt equation (28) as the radiative 
boundary condition. 

The grey-gas counterparts of equations (27) 
and (28) are 

a2qR’ 
- - 4naa,,B,,~ - b2c$qR’ = 0 
ax2 

and 

[~-b.oqR]x=o= - 47caLY,B,,( T:, - 2-L = J, 

where qR’ is the heat flux over all frequency. 
These equations are found by specializing 
equations (27) and (28) to the situation where 
a a, = constant for all v. With the appro- 
pzag exponential approximation for both F, 
and E,, we then have m, exp (-n,z) E F, = 
cr,E,(a,z) 2 LQU exp (- ba,z), so that m, = q, 
and n, = ba, in the above equations. 

We see that the grey and nongrey equations 
have the same mathematical structure. They 
differ only in the coefficients that appear in the 
various terms. Since these coefficients are con- 
stants for any given reference state, solutions 
previously obtained with the grey exponential 
approximation can therefore be reinterpreted 
for a nongrey gas through an appropriate 
normalization (see Section 5). 

4. ANALYTICAL RELATIONS FOR m. AND n, 

The functions mO_ and n, can be obtained 
analytically in much the same way as is done for 
the constants a and b in the grey exponential 
approximation, that is, by analytically matching 
certain properties of the exact and approximate 
transmission functions. 

An inspection of the equations leading to the 
boundary condition (28) suggests the import- 
ance of an accurate representation of F, and F, 
at z = 0. An obvious choice of matching there- 
fore is to take m, = F,(O) and ma/no = FJO) 
(see equations (20) and (21)). Since F3(0) = 

3 F, z ()df’ th z rom e recurrence formula (17), this 

ii equivalent to matching the zero-intercept and 

area of the function F,. In making this choice 
we in effect emphasize the importance of the 
boundary condition and of the radiative field 
optically close to the wall. With this matching, 
the definition (15) of F, leads to 

m. 1 
- = -, 

2 no 
(Jla) 

and this result and the definition (14) of F, give 

dBv s I dv 

no = 2 
a..+0 

avOdT o 

d4 

s I 
dT dv 0 

u.o-#o 

- 2& LPO 
ve.? 2ULPo. 

for all Y (3 W 

In these we have used the fact that J&(O) = 3 
and E,(O) = 1. 

The quantity hLpo, which is a linear Planck 
mean over restricted ranges of frequency, is one 
possible choice of a physically meaningful 
emission coefficient for a nongrey gas. In the 
situation where a,, is nonzero for all v, it goes 
over into aLpO, the linear Planck mean over all 
frequency, which has been discussed in detail 
by Cogley, Vincenti, and Gilles [7]. As in that 
reference, aLpO can be shown to be, for the 
present spectral model, the correct mean emis- 
sion coefficient in the exact asymptotic limit of 
an emission-controlled situation (optically thin 
gas near equilibrium with negligible radiation 
from the boundaries). It is also the correct mean 
in the less restrictive thin-gas limit near equili- 
brium when the boundaries are isothermal and 
radiate isotropically, which is the situation we 
treat here. (This special case was implied in [7] 
immediately following equation (16).) It is not 
surprising that the matching of the preceding 
paragraph introduces BLpO as the mean co- 
efficient, since we have weighted the approxi- 
mation in favor of small values of n,z and the 
gas will always appear thin for .sufticiently small 
values of this product. 

If we wish to emphasize the radiative field 
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at larger distances, we can match the exponential 
function to the area and first moment of F,. 
In view of the equivalence noted previously, 
the area matching leads to the same result as 
in equation (3la). The matching of the first 
moment gives, after introduction of &(a,~) 
from equation (8) and interchange of the order 
of integration?, 

m,z e --nor dz 

1 f dB,> 1 
= -k_ 

B TO J %J 
% +J 

X 

-.-L do 
1 to 

Carrying out the integration then leads to 

(32) 

This and equation (31a) give 
matching 

and 

m. 1 -=- 
n0 2’ 

P 

IO 

finally for this 

A third possible procedure is to match 
the exponential function to the zero-intercept 
and first moment of F2. This may be thought ofas 
a compromise between the two previous pro- 
cedures. The two parts of this matching have 
been carried through in the course of the above 
(i.e. m. = F2(0) = BLpo and equation (32)). The 
combined results give finally 

(33a) and 

The quantity &,, the Rosseland mean over 
restricted ranges of frequency, goes over into 
the ordinary Rosseland mean a&, in the sit~tion 
where a,, is nonzero for all v. Again in [7], the 
Rosseland mean evaluated at the reference 
condition is shown to be the correct mean to 
use for a thick gas near equilib~um. 

t The interchange in the order of integration here is valid 
only when the integration over v has been limited to the 
frequency regions for which a?,, # 0. The correct evaluation 
of the right-hand side of this equation could be obtained for 
an integration over all v, but care is then needed in evaluating 
the divergent inner integral when CI”@ is zero. This is one of 
the reasons for introducing the integration convention (IO). 

That this matching introduces a Rosseland 
mean absorption coefficient might be expected, 
since it emphasizes the large values of noz 
and the gas will always appear optically thick 
for sufficiently large values of this quantity. 
This matching may not be appropriate when a 
radiating boundary at x = 0 plays a major 
role in the problem, since it will predict the 
heat addition to the gas incorrectly at small 
values of n,x. This conjecture will have to be 
confirmed, of course, by examining specific 
problems. 

no = (3&LP,&&)t ““s (3$&,1+,)‘. (34b) 

For the special situation in which LX,, is non- 
zero for all v, the results (34a, b) have also been 
obtained in [7] by arbitrarily requiring that the 
linearized grey differential approximation for 
the net radiative heat flux in three dimensions 
take on the correct thick- and thin-gas limits, 
Traugott [8] had previously introduced this 
kind of argument to incorporate spectral pro- 
perties into the corresponding nonlinear equa- 
tions.? In [7] the following differential equation 
for the net radiative flux (written here in one 
dimension) was obtained by this procedure : 

asp' dT’ 
__ - 16~ T&p0 x - %&,aRoqR’ = 0. ax2 

Comparison of this equation with equation 

t Both papers can be-generalized by introducing means 
over restricted frequency rangers, as in the present formu- 
lation. 
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(27) in the situation where u,, isnonzero for all v 
results in the values for ma and n, given by the 
relations (34a, b). 

The above matching procedures are the three 
most obvious of the many that could be devised. 
It is not possible without further study to say 
which of the three gives the best matching or 
to recommend the use of one particular pro- 
cedure. By the assumption of suitable functional 
forms for oz,, closed-form integration of the 
exact transmission functions may be possible. 
If so, an analytical comparison of the trans- 
mission functions and their exponential approxi- 
mations could be made. If not, the approach 
must be, as stated earlier, to compare the 
exponential approximation with the results 
from numerical evaluation of the transmission 
functions for specific gases and specific values of 
T@ and pa. The first two matchings are appealing 
because the matching of the zero-intercept of 
F, (or equivalently the area of F,) leads to the 
result m&t,, = 3. We then have no inconsistency 
in the radiative boundary conditions (28) and 
(30). The third matching does not have this 
property. It does, on the other hand, make the 
resulting differential equation for @’ satisfy 
the correct thick- and thin-gas limits. 

5. EQUATIONS OF RADIATIVE ACOUSMCS 

We can now couple the equations for QR’ 
with the linearized equations of gas dynamics. 
For an imperfect gas in local the~odynamic 
equilibrium, the one-dimensional unsteady-IIow 
equations, linearized about a uniform, equili- 
brium state of rest, can be written as 

&+o, 

au ap’ 
P0~+;5;;=0, 

ah’ apf ap’ 
‘Oat at ax --=--s 

h’ = h,p’ + h,p’, 

and 

where t is the time and u’, h’,p’, and p’ are the 
perturbations in the velocity, specific enthalpy, 
pressure, and density, respectively. Radiative 
pressure and energy density have been neglected 
in writing these equations. The final two equa- 
tions contain the linear terms from Taylor’s- 
series expansions of the general equilibrium 
state functions h = h (p, p) and T = T(p, p); 
the subscript notation denotes partial differentia- 
tion of these functions, for example, 

h, = (ah/+), lo. 
To aid in the interpretation of the later 

equations, we introduce the following normali- 
zation : 

Here as, is the isentropic speed of sound defined 

by 

and c, is the specific heat at constant pressure as 
given by 

dh 01 h 
c PO 
fi=aT =T’ PO PO 

These quantities are defined here for a gas in 
local thermodynamic equilibrium and are not 
to be confused with the corresponding quantities 
as defined for a chemically frozen gas (cf. [r3], 
p. 257 for definition ofthe frozen and equilibrium 
speeds of sound). 

With the normalization (3~9, the gas-dynamic 
equations become 

(36) 

(37) 
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and 

cppoTofi = PohpJ -I- PO&j (39) 

T,T = pact + p,T,jK (401 

The differential equation (27) for the net radia- 
tive heat flux and the radiative boundary 
condition (28) become 

a2qR 
- 

-p-- &j-Kg -- qR = 0 (41) 

and 

aqR 

[ 1 -- 
a< qR r=o = - o o 

@ ,;)Bo(Tv - T=o), 
(42) 

where the nongrey Boltzmann number is defined 

by 

PO%bCPo - B. 
=----=: . 

OT;: 
(43) 

If we introduce the normalized perturbation 
potential (7i defined by ii = &$a< and (PO/ 
p&J jj = - &#az (thereby satisfying equation 
(37)) and eliminate ii, fi, T, and QR between the 
remaining equations (36) through (41) (cf. [3], 
p. 497), we obtain the following fifth-order 
partial differential equation : 

- @r,, - &>* = 0. (44) 
The subscripts < and z denote partial derivatives, 
and the isothermal speed of sound uTo is defined 

by 

From equation (421, we can in a similar manner 
write the radiative boundary condition on 
TW(7) = Th(r)/T, as 

+ Ew& - w,lls=o? (45) 

where we have for brevity introduced the 
notation 

and 

Values for m. and no need not be specified 
in order to carry out generalized solutions 
based on actions (44) and (45). This is so 
because the dimensionless parameters & and 
no/m0 always appear as a product and can 
therefore be included into a single new para- 
meter K = (no/m& h. The ratio no/m0 appears 
with the Boltzmann number as a consequence 
of the nongrey substitute-kernel approximation. 

The nongrey Boltzmann number Bo retains 
the same physical meaning that the ordinary 
Boltzmann number Bo (see equation (43)) 
carries throughout the literature. Its interpreta- 
tion, however, is slightly different owing to the 
fact that the present radiative model may repre- 
sent a gas that emits and absorbs radiant energy 
in finite intervals of frequency. If we multiply the 
numerator and denominator of de~nition (43) 
by lir’ we obtain 

which can be interpreted as a measure of the 
ratio of the energy flux of the wave to the radiant 
energy flux due to spontaneous emission from 
the general nongrey gas. The de~nition of Bo, 
when written in the above manner, contains 
in its denominator the term(?t/4) B,,T’ = oTz T’, 
which characterizes the spontaneous emission 
only in the special situation where LX,, is nonzero 
for all v (see equation (43)). 

As with the radiative equations in section 3, 
the acoustic equation (44) and radiative bound- 
ary condition (45) have the same structure as 
the corresponding equations for a grey gas 
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(cf. f3], p. 491 and 499). They differ only in the AC~O~E~E~~ 

definitions of the normalized indenendent vari- The authors are indebted to Dale L. Compton of NASA, 
a 

ables and the Boltzmann number. Solutions Ames Research Center and Robert Tripodi of Stanford 

already carried out with the exponential approxi- 
University for valuable criticism and discussion. The work 
was supported by the U.S. Air Force office of Scientific 

mation for a grey gas can be reinterpreted Research under Contract AF49(638)-1280. 

accordingly for a nongrey gas by replacing the 
grey-gas parameters uuo, bclo and Bo by their 
nongrey counterparts m,, n,, and Bo, respectively. 

1 
’ 

2. 
6. CONCLUDING REMARKS 

The above development depends critically 
on the linearization of the equation of radiative 3, 
transfer. There is a possibility, however, that 
the basic ideas may carry over to the nonlinear 4. 
problem. Such general~tion would entail cer- 
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RCsumi-Les equations pour le transport par rayonnement dam des geometries a plaques parallbles 
sont etudiees pour un gaz non gris prb de l’tquilibre. On suppose que les processus moleculaires s’effectuent 
avec un Cquilibre therm~yn~ique local. En supposant que les deviations a partir d’un Ctat de reference 
d’equilibre de rayonnement sent faibles, on linearise l’equation du transport par myonn~ent. Ceci permet 
d’effectuer independamment les integrations necessaires par rapport a l’espace et a la frequence spatiale. 
Par analogie avec les procedes du gaz gris, une approximation de noyau de remplacement non gris (ou 
exponentiel) est alors faite pour certaines fonctions de transmission integrtes par rapport a la frequence 
qui se trouvent dans les expressions des flux de chaleur. Les propriMs spectrales apparaissent dans la 
fo~u~tion dans deux fonctions, qui sont introduites par ~approximation et qui dependent de Mat de 
reference du gaz. Ces fonctions sont obtenues par des procedes de jonction analytique, qui detinissent les 
coefficients d’absorption moyens linearids de Planck et de Rosseland ayant un sens physique pour un 
gaz general non gris. Pour l’emploi en rayonnement acoustique, l’equation differentielle pour le flux de 
chaleur est coupl&.e avec les equations linearides de la dynamique des gaz. Les equations resultantes pour 
un gaz non gris ont la meme structure ma~~matique que les equations pour un gaz gris, qui sont maintenant 
comprises comme cas special. Les resultats des solutions existantes du gaz gris peuvent done itre reinter- 

pret&es ii l’aide d’un gaz non gris par une normalisation appropriee. 

Zusammenfassung-Die Gleichungen fti den Warmeaustausch durch Strahlung in geometrisch plan- 
parailelen Anordnungen sind untersucht fiir ein nicht graues Gas in der NZhe des Gleichge~chts. In den 
molekularen Prozessen wurde lokales thermodynamisches Gleichgewicht vorausgesetzt. Unter der 
Annahme, dass nur geringe Abweichungen von einem Bezugszustand des Strahlungsgleichgewichts vor- 
kommen, wurde die Gleichung fiir den Warmeaustausch durch Strahlung linearisiert. Dies erlaubt eine 
unabhgngige DurchfBhrung der erforderlichen Integrationen tiber den Raum und iiber die Spektralfrequenz. 
In Analogie zu den Rechenverfahren beim grauen Gas wurde dann beim nicht-grauen Gas eine Ersatz- 
kernfunktion- (oder exponentiellef Naherung gemacht fur bestimmte tiber die Frequenz integrierte 
Ubertragungsfunktionen, die bei den Ausdrticken ftir die Warmestrome auftauchen. 
Die spektalen Eigenschaften erscheinen bei diesem Ansatz in zwei Funktionen, die durch die Naherung 
eingefuhrt wurden, und die vom Bezugszustand des Gases abhangen. Diese Funktionen wurden durch 
analytischen Vergieich von Prozeduren ermittelt, die hnearisierte mittlere Abso~tionskoeffi~enten 
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(Ihnlich den Planck- und Rolleland’schen Koeffiienten) definieren, die ftir ein allgemeines nicht-graues 
Gas physikalisch bedeutsam sind. Zur Anwendung in der Strahlungsakustik wurde die Differentialgleichung 
fiir den Warmestrom gekoppelt mit den linearisierten Gleichungen der Gasdynamik. Die fiir das nicht- 
graue Gas resultierenden Gleichungen haben die selbe mathematische Struktur, wie die Gleichungen 
fti das graue Gas, die nun als Spezialfall enthalten sind. Die Ergebnisse der existierenden Lijsungen ftir 
das graue Gas konnen deshalb durch zweckmassige Vorschriften hir das nicht-graue Gas uminterpretiert 

werden. 

AEEOT8qAsI-kl3yYaIoTCR ypaBneHurr ny~ac~oro nepeHoca B nnocrtonapannennbrx reo- 
Merprirrx Ann rieceporo raaa B C~CT~RHUU; 6~1113~0~ K paBHOBeCHOMy. npeaIIOJIaraeTCH, YTO 

B MoneKynsipanx npoqeccax UnfeeT rdecT0 noKaabHoe Teprdo~uKardUsecKoe paeaoaecae. IIpU 

~OIly~eKUu, 9TO OTKJlOHeHuJi OT Ha=IaJlbHOrO COCTOHHUH JlyWlCTOrO paBHOBeCUH HeBeJIUKU, 

nUKeap~3UpoBaKo ypaBHeHUe nyqucTor0 nepeaoca. 3~0 noaB0~1uno npoBecTU Ka3aBUcuMoe 

UHTerpUpOBaHUe II0 IIpOCTpaHCTBy U CIIeKTpaJIbHOfi ~aCTOTe. n0 aHaJIOrUU C MeTOHUKOti, 

ucnonbayeMott nn~ ceporo ra38, gnu Heceporo raaa npu ucnonb3oBaKuU annpoKcuMaqua c 

3aMeHOt fI@a (UJIU 3KCllOHeHQUaJIbHOti)3aTeM HaXORUTCR npeo6pa30BaHue AJIH OIIpel[eJleH- 

HbIX YaCl'OTHO-UHTerpUpyeMbIX @yHKQUti, KOTOpbIe BCTpeYaIOTCfl B BbIpameHUHX AJIJf TeIIJIO- 

B~IX n0~0K0B. CIleKTpaJIbHEJe CBOtCTBa IIpeACTaBJIFHbI B f#lopMyne ~BYM~ QI~HKIJUI~MU, 

KOTOpble RBJIfIIOTCJl pe3yJIbTaTOM IlpUHHTOti aIlUpOKCUMa~UU U KOTOpbIe 33BUCHT OT HaYaJlb- 

HOrOCOCTORHURra3a.~TU~yHK~UUHaXO~RTCRMeTO~aMUaHa~UTUiseCKOt~O~rOHKU,KOTOpbIe 

onpefienfnoT nuHeapU3UpoBaHHne cpeAHUe Koa@@qUeHTn aBcop6qUu nnaaea, PoccnaHAa, 

UMeIOIqUe +i3U9eCKUf&CMbWI~JIHo6bIYHoro HeCepOrO ra3a.&IRUC~OJIb30BaHUHB JIyWCTOt 

aKyCTUKe,~u~I$epeHquanbHoe ypaBKeKUe TennoBoro noToKa 06%e~UHHeTcx c nUKeapU3Upo- 

BaHHbIMUypaBHeHElRMU~a30~UHaMUKU.~OJIy~aeMbIeBpe3y~bTaTeypaBHeHUR~~RHeCepOrO 

ra3aUMeloTTyEie MaTeMaTUYeCKyIO CTpyKTypy,qTO Uy~aBHeHURAJIRCepOrO ra3a,KOTOpbIe 

Tenepb RBJIHIOTCR YaCTHbIM cnyqaenr. Pe3yJIbTaTbI uMexOwixcfl peruewfll n,nJl ceporo raaa 

MOmHO IIO3TOMy BIJpa3UTb C IIOMOIIJbIO BbIpaPKeHUti @Ifi HeCepOrO ra3a IIyTeM COOTBeT- 

CTByIOWet HOpMaJlU3aqUU. 


