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Abstract—The equations for radiative transfer in plane-parallel geometries are studied for a nongrey gas
near equilibrium. Local thermodynamic equilibrium is assumed in the molecular processes. On the
supposition that deviations from a reference state of radiative equilibrium are small, the equation of
radiative transfer is linearized. This allows the required integrations over space and spectral frequency
to be carried out independently. In analogy to the grey-gas procedures, a nongrey substitute-kernel (or
exponential) approximation is then made for certain frequency-integrated transmission functions that
occur in the expressions for the heat fluxes. This leads to a purely differential equation for the net radiative
flux. The spectral properties appear in the formulation in two functions, which are introduced by the
approximation and which depend on the reference state of the gas. These functions are found by analytical
matching procedures, which define linearized Planck- and Rosseland-like mean absorption coefficients
that are physically meaningful for a general nongrey gas. For use in radiative acoustics, the differential
equation for the heat flux is coupled with the linearized equations of gas dynamics. The resulting nongrey
equations have the same mathematical structure as the grey equations, which are now contained as a
special case. The results of existing grey-gas solutions can therefore be reinterpreted in terms of a nongrey
gas by an appropriate normailization.
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NOMENCLATURE E,(z), exponential-integral function [see
a, b, constants in the grey substitute- equation (8)];
kernel approximation ; F(z), frequency-integrated transmission
as,, isentropic speed of sound; function [see equations (14) and
ar, isothermal speed of sound ; (15)];
B, Planck function; h, specific enthalpy;
By,  temperature derivative of the fre- I, specific intensity ;
quency-integrated Planck function L, direction cosine of direction of radi-
[see equation (16)]; ative propagation;
BO, ordinary Boltzmann number [See mg, R, functions in the nongrey substitute-
equation (43)]; kernel approximation [see equation
Bo, nongrey Boltzmann number [see (20)];
equation (43)]; 12 pressure; .
Cpe specific heat at constant pressure; Qv:,  one-sided radiant heat fluxes per
unit frequency;
+ Presently: Member of Technical Staff, Aerospace B one-sided radiant heat fluxes;
Corporation, Los Apgeles, California. o o qR’ net radiant heat flux, Qﬁ — Ok :
i Presen?ly : Assistant Professor, University of Ilinois, T temperature ;
Chicago, Illinois. ’ ) ’
§ Professor. t, time ;
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u, velocity ;

X, space coordinate;

z, general argument of a function;

*,, spectral absorption coefficient ;

. grey absorption coefficient ;

arp,  linear Planck mean emission co-
efficient ;

Xz, Rosseland mean absorption co-
efficient ;

v, spectral frequency;

g, normalized space coordinate [see
equation (35)];

0 density ;

1, normalized time [see equation (35)];

@, potential function.

Subscripts

( s

quantity pertaining to the wall;

( os evaluated at the reference condition.
Superscripts

(), perturbation quantity ;

) quantity restricted to certain fre-
quency ranges by the integration
convention [see equation (10)];

O normalized quantity [see equation

(35)].

1. INTRODUCTION

THE ASSUMPTION of a grey gas, though useful for
exploratory purposes, does not lead to a suffi-
ciently accurate description of radiative transfer
for current experimental and theoretical studies
of radiatively driven acoustic waves [1, 2]. The
present theory has therefore been formulated to
retain the essentially nongrey character of the
transfer problem, while remaining simple
enough for analytical solution of the resulting
acoustic equations. The basic formulation is
also applicable, however, to any plane-parallel
transfer problem, static or dynamic, in which the
temperature and density variations within the
gas are small enough to allow linearization
about an equilibrium reference state. The
equations appropriate for such general applica-
tion are therefore developed first without refer-

ence to gas dynamics. The acoustic theory that
gave the original motivation is then discussed
at the end.

The development assumes {see, for example,
Vincenti and Kruger [3]) that nonequilibrium
effects from all purely molecular processes are
negligible. The radiative effects are thus taken
into account on the hypothesis of local thermo-
dynamic equilibrium.t Radiative scattering is
neglected as being small in the applications in
which we are ultimately interested. To fix the
problem, the geometrical configuration is taken
to be that of a semi-infinite expanse of radiating
gas to the right of an infinite, plane, radiating
black wall.

On the assumption that deviations from
radiative equilibrium are small, the equation of
radiative transfer is first linearized about an
equilibrium reference state. This allows the
necessary integrations over space and spectral
frequency to be carried out independently. This
fact was apparently first noted by Baldwin [5]
but was not fully exploited by him. Certain of
the present ideas in embryonic form have also
appeared in the work by Ryhming [6], who
considered acoustic propagation in a gas radia-
ting in a grey band (absorption coefficient
constant over a finite range of frequency). The
following formulation, however, places no re-
strictions on the absorption coefficient.

Following the above integrations, the ex-
pression for the radiative heat flux appears in
integral form. A nongrey substitute-kernel {or
exponential) approximation is then made for
certain frequency-integrated transmission func-
tions, which account for both the spectral and
directional properties of the radiative field. As
in the analogous procedure for a grey gas, this
approximation leads to a purely differential
equation for the heat flux. This second-order

1 The nongrey substitute-kernel approximation, which
will be central to the formulation, is not limited to gases in
local thermodynamic equilibrium and has been employed
by Gilles [4] in a theory for coupled radiative and vibra-
tional nonequilibrium. As an example of a nonacoustic
application, it is used there to obtain a perturbation solution
for steady flow through a normal shock wave.
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equation contains the grey-gas equation as a
special case and has, in fact, the identical
mathematical structure as the grey equation.
The same can be said regarding the radiative
boundary condition, which is also derived. By
introduction of an appropriate normalization,
the present results can therefore be used to
reinterpret, for a nongrey gas, many of the
previous grey-gas solutions.

The nongrey substitute-kernel approximation
introduces two functions denoted by my(p,, Tp)
and ny(py, Tp), where p, and T, are the un-
disturbed density and temperature, respectively.
These functions can be related analytically or
numerically to the spectral properties of the gas.
They can be eliminated formally from the final
equations through the definition of the norma-
lized variables. To obtain results in terms of the
physical variables, however, requires their speci-
fication. In the present work, this is done
analytically by matching certain properties (i..
zero intercept, area, or first moment) of the
approximate exponential kernel to those of the
corresponding exact transmission function. This
results in the definition of linearized Planck-
and Rosseland-like mean absorption coefficients
that are physically meaningful for a general
nongrey gas. For a gas in which the absorption
coefficient is nonzero at all frequencies, these
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frequency-averaged coefficients reduce to the
ordinary linearized Planck and Rosseland means
discussed by Cogley, Vincenti and Gilles [7].

For application in radiative acoustics, the
differential equation governing the radiative
heat flux is finally coupled with the linearized
equations of gas dynamics. This leads to a
single fifth-order partial differential equation
for a perturbation potential function. This
equation and the corresponding radiative
boundary condition also contain their grey-gas
counterparts, with which they share a common
mathematical structure.

2. EQUATIONS OF RADIATIVE TRANSFER
NEAR EQUILIBRIUM
The coordinate system is shown in Fig. 1. The
equation governing the frequency-dependent
specific intensity I, can be written, with the
relatively small time-derivative term omitted, as
(see, for example, [3])

oI,
15; - av[Bv - Iv] (1)

Here the subscript denotes values at the spectral
frequency v; a, is the volumetric absorption co-
efficient, B, the Planck function, I = cos ¢ the
direction cosine of the direction of radiative

Direction of
propagation

FiG. 1. Coordinate system.
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propagation, and x the space coordinate normal
to the wall. Equation (1) can be linearized about
a reference state of radiative equilibrium to
obtain the following equation for the perturba-
tion specific intensity I:

ar,
ax

Subscript 0 denotes the equilibrium reference
condition, and the primed quantities are small
perturbations defined by I, = I,, + I, = B, +
I,and B, = B,, + B, = B,, + dB/dT|, T,
where T is the temperature.

Implicit in our employment of a condition of
radiative equilibrium for a semi-infinite expanse
of gas is the notion that equations (2) through
(7) are written only for those spectral frequencies
for which «,, # 0. Within such absorbing and
emitting “bands,” radiative equilibrium can
exist, and the reference intensity is justifiably
taken as B,  irrespective of the direction l. For
frequencies at which a,, = 0, true equilibrium
can not exist, since in the absence of a wall on
the right there is no mechanism for emission at
such frequencies in directions { < 0. B, is
therefore not available as a reference in those
directions. Such frequencies, however, are of no
interest to us (even for ! > 0), since they entail
no coupling between the radiation and the gas.
A frequency-integration convention will be
introduced later that takes care of this matter in
an automatic way.

The formal solution of equation (2) can be
written (cf. [3], p. 481)

I;(’Cal > 0) = I,v Xyos l)eXp [_avo X - xw)/l]

.\ dB,
%o qT

Xw

152 =a,[B, - I]. )

T exp [ —a,(x — X)/1] d%/I

0

(3a)
and
s { dBV 1
If(x,] <0) = ~ Savo—gﬁ,—o T
exp [ —a,(x — X)/1]dx/l, 3b)
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where % is the running variable of integration
and the subscript w denotes quantities pertaining
to the wall. The solution is written in two parts
because of the different boundary conditions on
I, for different ranges of I For propagation
away from the wall {{ > 0), we have I\{x,,]) =
dB,dT|, T, since the wall is assumed to
radiate as a black body. For propagation
toward the wall (I < 0), the boundary condition
is I'(o0, ) = 0, since all perturbation quantities
are taken to be zero at infinity.

The perturbations in the one-sided radiant
heat fluxes per unit frequency for the positive
and negative directions, respectively, are defined
by (cf. [3], p. 441)

0
R=2n [ IL(x1>0)dl 4
i1
and
-1
Ro=2n [ IIfx,1 < 0)dlL %)
)

Substituting solutions (3a, b) into equations (4)
and (5) and carrying out mathematical details
similar to those described in [3], p. 481, we
obtain

dB, ,
R = ZK{——-d T, T Esfo,(x — x,)]
dB,| .., e
+ S “Vo”an . T'E,[a, (x — %)] dx} (6
and

o
dB
f:. = zn{g Ly KT_"
where the exponential-integral functions are
defined by

T'E,[o,(% — )] dfé\}, 0

0

1

E(fz) = {exp(—z/hI""?dl, (naninteger). (8)
]

These functions satisfy the recurrence formula

dE
2 e

©®
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We must now integrate equations (6) and (7)
over frequency. To do this we introduce the
integration convention

v= |
o,, #0

R

v, dv, (10)
where the notation «, # 0 signifies an integra-
tion over all frequencies for which «, is nonzero.
In the special situation where «,, is nonzero for
all v, we have the correspondence

ll DODRIO

j( )dv. (11)

for all v

f O)dv
a,, #0

The foregoing integration convention auto-
matically selects that part of the perturbed
emission from the black wall (the first term in
equation (6)) that can interact with the gas. Wall
emission at frequencies at which «, = 0 can
never be absorbed by the gas and hence is of no
consequence in determining the thermodynamic
state of the gas.

The integration convention (10) is general and
implies no restrictive assumptions concerning
the absorption characteristics of the gas. The
limits of the frequency integration are free to be
set in each particular case by the nature of the
absorption coefficient. The convention also
allows all the usual mathematical manipulations
of the resulting equations because their singular
nature for a,, = 0 has been eliminated. Still
other reasons for introducing the convention
are concerned with the substitute-kernel
approximation and will be more easily under-
stood in that context.

We now integrate equations (6) and (7) over
frequency according to the convention (10). The
frequency-integrated one-sided perturbation
heat fluxes in the range a,, # O are then

A dB,
R = 2 4
Q% n{TW § aT |,

@, #0

Jrl] -

Ry

E3(a,x)dv

Ez [o,(x — %)] dv] dfé}

(12)
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and

R ' v
Q_ = 27I{S 1 S Ayo 5o .

T —x)]dv]dfé}, (13)

where x,, has been taken as zero for convenience.
The integration over frequency has been inter-
changed with that over X in these equations to
emphasize that the frequency integration can be
carried out independently of the perturbations
in the gas. This possibility is unique to the near-
equilibrium situation, in which all frequency-
dependent quantities are evaluated at the equi-
librium reference state. When the gas is far from
equilibrium, the corresponding nonlinear equa-
tions depend explicitly on B, and a,, which are
functions of position as well as frequency. The
integrations over the two variables can not then
be carried out independently, as they can for the
linearized equations.

We can exploit the independence of the
frequency integration by defining the trans-
mission functions

E;[a, (%

dB,

Fyz;p0, To) = Ex(ay,2z) dv

; S
ﬁTo
a,,#0

(14)

and

E a(a,,2) dv.

1 dB
Fyz; po, Tp) = B
To
ﬂaeo

(15)
The quantity BTO in these equations is defined by

dB 46T3
B = v 0
To S dT |,
%,,#0

d a,, nonzero
e
for all v

= By,
16)

where ¢ is the Stefan-Boltzmann constant. As a
consequence of the recurrence formula (9), the
functions F, satisfy a similar relation, that is,
dF,(z)
dz

= —F,_4(2). (17)
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Equations (12) and (13) can now be written in
the more compact form

QF = 21 By {T,F3(x) + [ T'Fy(x — %) d%},
0

(18)

and

Q% = 2n B, { ]9 T'FyX — x)dx}.  (19)

The definitions (14) and (15) of F, and F,
cause equations (18) and (19) to look formally
like their grey-gas counterparts. In particular,
F,, F;, and BT correspond respectively to
aoE(tto2), Es(002), and By, = 40 T3/n, where a,
is the grey absorption coefficient. In fact, the
former guantities reduce directly to the latter
when a,, = a, = constant for all v in equations
(14), (15), and (16). The nongrey formulation
thus contains the grey formulation as a special
case. Moreover, the mathematical structure of
the nongrey equations is the same as for the
grey equations. The implications of this will be
discussed at the end of the next section.

The transmission functions F, and F, can be
computed numerically, given data for a, (p,, Tp).
They incorporate both the spectral and direc-
tional character of the radiative field into
equations (18) and (19), irrespective of the
variations in temperature. The expressions for
the fluxes, however, are still in integral form. To
obtain analytical solutions, particularly of the
resulting acoustic equations, it is desirable to
have the flux described by a purely differential
equation. A substitute-kernel approximation
for the nongrey gas will therefore be introduced.

3. NONGREY SUBSTITUTE-KERNEL
APPROXIMATION
In grey-gas theory, a widely and successfully
used approximation is to replace the ex-
ponential-integral kernel E, by a purely ex-
ponential function according to E (a2} = a
exp (—bayz), where a and b are dimensionless
constants. Noting that the transmission function
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F, has a strong dependence on E,, Baldwin [5]
suggested (although in a different formalism)
that F, be replaced in analogous fashion.
Following this suggestion, we therefore intro-
duce the approximation

Fy(z; po. To) = mo(po, To) €xp { —nolpo, Tp) 2},
(20)

where the dependence on.p, and T is included
in the functions m, and n,, which thus have
fixed values for any given reference condition.
These functions represent, in effect, some as yet
undefined, frequency-averaged emission and
absorption coefficients, respectively. In order
that the substitute kernel will satisfy the
recurrence formula (17), we correspondingly
replace F, by

—noz

m
Fylz; po, To) = ;{93 (21

o

We note in passing that it is the introduction
of the integration convention (10) that makes it
possible to replace F5 by a pure exponential. If
we had integrated from 0 to oo, the counterpart
of F, would have been defined and its ex-
ponential approximation written (since E,(0) =
3) as

1 [dB
v E —
Brog aT |, s{a,,2) dv = BTO dv
BTQ K 3(ocVOZ) dv
w®0
B,
= fTy) + 5 e,

BTQ 0

The function f{T,) in effect accounts for that
portion of the radiant heat flux from the black
wall that cannot interact with the gas and thus
does not enter into the present formulation.
Definition (10) allows us to dispense with this
unessential function.

The accuracy of the approximation (20)
depends, of course, on how well a pure ex-
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ponential, with suitable choice of m, and n,,
can represent the exact frequency-integrated
transmission function. In principle, m, and n,
could be determined by fitting the exponential
(20) (e.g. by a least-squares method) to the
results of a numerical calculation of F,. Instead,
we present in the next section an analytical
matching procedure that will express m, and n,
in terms of the aforementioned frequency-
averaged emission and absorption coefficients.
In either event, since m, and n, would most
likely have to be evaluated specially for each
different reference condition, the nongrey sub-
stitute-kernel approximation is different from
the analogous approximation for a grey gas. In
the latter case, E, is a function solely of the
product «,z; the dependence on the physical
state of the gas is absorbed into this generalized
argument through the value of a, (which must
then be chosen on the basis of independent
arguments). A general comparison of E, with
its exponential approximation in terms of this
generalized argument is therefore possible for a
grey gas (see [3], p. 484, Fig. 2). Such com-
parison cannot be made for the nongrey sub-
stitute-kernel approximation.

The present formulation is different from that
for a grey gas in another important aspect. The
nongrey substitute-kernel approximation con-
tains the two parameters m, and n, and the
integration convention (10), which together
allow us to characterize the absorption co-
efficient and radiative emission for a nongrey
gas; that is, n, and 4nm,By T’ represent the
absorption coefficient and the rate of spon-
taneous emission per unit volume, respectively
(see, for example, equation (25) below). The
grey substitute-kernel approximation, on the
other hand, contains only the one parameter o,
the grey absorption coefficient ; the grey spon-
taneous emission follows necessarily as
4ranyBr T’ = 16a0,cT3T'. (The constants a
and b in the grey substitute kernel must be of
order unity and reflect the behavior of the
function E,, not the spectral properties of the
gas.) We thus have in the present formulation

more freedom with which to represent the
radiative properties of the gas.

If, in the interest of greater accuracy, a sum of
exponentials were assumed in place of the
approximation (20) (e.g. Fy(z; po, To) = ). my,

exp (—nyo,2)), an essentially many-parame{er fit
could be obtained for the transmission function.t
One can, of course, also retain additional ex-
ponential terms in the grey-gas formulation,
giving a many-parameter fit to the function E,
(or more precisely o, E,). This does not, however,
alter the fact that aoE,(xyz) is itself a poor
approximation to begin with for the correct
transmission function for a nongrey gas.

With the substitute-kernel approximation,
equations (18) and (19) become

X
N - my _
R = 2nBy (T, —e™™ + |\ T'm,
Ry
o

exp [ —no(x — %)] di} 2)
and
O = 20By (| T'myexp [ no(® — %] d5).
) (23)

Instead of these one-sided heat fluxes, it will be
more convenient to deal with the net heat flux
g% = Q% — OX. This is because we are in-
terested primarily in the derivative 84% /ox,
which gives the net energy lost by the gas per
unit volume. The equations for 4% and 84% /ox
follow from equations (22) and (23) as

4% = 2nBy, {T;v Mo ¢ -nox
noy
+ S T'mgexp [ —ng(x — X)] dX

0

t This procedure has been carried through and leads to a
higher-order partial differential equation than the one
obtained here (two orders higher for each additional ex-
ponential retained).
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- 5 T'mgexp [ —no(X — x)] df} (24)

and

ogr ~
gx_ = —2nBy, {T(vmo e

+ S T'mgngexp [ —no|% — x|]d% — 2mOT’}.
0

(25)

As in the grey-gas case, the radiative-transfer
problem can now be formulated in purely
differential form. For this we need the second
derivative of §®', which is

20K .
__azz = 2nB;, {T(vmono e "ox

+ | T'mond exp [ —no(x — %)} d*

’

mgon3 exp [ —no(X — x)] d%

oT’
+ 2m, }

K8 O €y

- 2
6x (26)
Subtracting n3 times equation (24) from equa-
tion (26) then results in

it/ oT’ .
a—zz - 4anBT0§ -ng® =0, (27

which is a purely differential equation governing
the net radiative heat flux ¢%".

The appropriate radiative boundary condition
at x = 0 can be found by evaluating equations
(24)and (25)at x = 0. Doing this and eliminating
the integral term between the resulting equa-
tions, we obtain

b , -
[ﬁ— - noéR] = —4nmyB (T, —
x=0

Ti=o)
ax x—O)

(28)
Equation (28) relates the heat flux at the wall to

the temperature jump (7, — T.-o). I we
examine the physical meaning of each term in
the equations leading to this relation, we find
that it expresses the energy balance for an
element of gas at x = 0. Our ability to write
the energy balance as equation (28) is, of course,
a consequence of the substitute-kernel approxi-
mation.

By working with the one-sided heat fluxes, we
can obtain the radiative boundary condition
from a different argument. We begin by evalua-
ting the exact one-sided flux at the wall from
equation (18). This gives

O | 1= = 2nBy, T, F3(0) = 7By, T, (29)

This is then used in conjunction with the
relation 4% = Q% — QX and equations (23) and
(25), all evaluated at x = 0, to obtain

a n , ,
— —2mmyBy, {(1 + Z_n:o) T, — 2Tx=o}.

(30)

The different approaches thus lead to different
boundary conditions. Equations (28) and (30)
become identical, however, when mgy/n, = 1.
The conditions under which this equality holds
will be discussed in the next section.

The difference between the two radiative
boundary conditions is due to the way in which
the substitute-kernel approximation has been
applied in the two cases. To obtain equation
(28), the approximation was applied formally
throughout, i.e. the approximate equations (24)
and (25) were used in a purely formal manner.
Equation (30), on the other hand, was obtained
from the exact relation (29) plus the approximate
equations (23) and (25). This points out the type
of internal inconsistency that can arise in the
radiative equations when the substitute-kernel
approximation is applied in different ways. We
consider the formal application of the approxi-
mation to be the more self-consistent. We
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therefore adopt equation (28) as the radiative
boundary condition.

The grey-gas counterparts of equations (27)
and (28) are

*q® T’ .
632 - 4““03105 —b*a3q® =0

and

aqR’ R’ ! !
x baog = —4nanoBr (T, — Ti=o),
x x=0

where g® is the heat flux over all frequency.
These equations are found by specializing
equations (27) and (28) to the situation where
a,, = &y = constant for all v. With the appro-
priate exponential approximation for both F,
and E,, we then have m, exp (—ny2z) = F, =
ooE,(0g2) = oga exp (—buyz), so that my, = aa,
and n, = ba, in the above equations.

We see that the grey and nongrey equations
have the same mathematical structure. They
differ only in the coefficients that appear in the
various terms. Since these coefficients are con-
stants for any given reference state, solutions
previously obtained with the grey exponential
approximation can therefore be reinterpreted
for a nongrey gas through an appropriate
normalization (see Section 5).

4. ANALYTICAL RELATIONS FOR m, AND n,

The functions m, and n, can be obtained
analytically in much the same way as is done for
the constants a and b in the grey exponential
approximation, that is, by analytically matching
certain properties of the exact and approximate
transmission functions.

An inspection of the equations leading to the
boundary condition (28) suggests the import-
ance of an accurate representation of F, and F,
at z = 0. An obvious choice of matching there-
fore is to take my = F,(0) and my/n, = F4(0)
(see equations (20) and (21)). Since F;(0) =

| Fy(z) dz from the recurrence formula (17), this
0

is equivalent to matching the zero-intercept and

area of the function F,. In making this choice
we in effect emphasize the importance of the
boundary condition and of the radiative field
optically close to the wall. With this matching,
the definition (15) of F leads to

m, 1

ng 2

and this result and the definition (14) of F, give

(31a)

dB,
j %y, ATl dv
,, #0
no = 2 dB
*1 dv
dT |,
4, #0

_ a,, nonzero
- Z&LPU for all v 2“"?0'

(31b)

In these we have used the fact that E,(0) = 3
and E,(0) = 1.

The quantity 8;p, which is a linear Planck
mean over restricted ranges of frequency, is one
possible choice of a physically meaningful
emission coefficient for a nongrey gas. In the
situation where a,, is nonzero for all v, it goes
over into a;p,, the linear Planck mean over all
frequency, which has been discussed in detail
by Cogley, Vincenti, and Gilles [7]. As in that
reference, d;p, can be shown to be, for the
present spectral model, the correct mean emis-
sion coefficient in the exact asymptotic limit of
an emission-controlled situation (optically thin
gas near equilibrium with negligible radiation
from the boundaries). It is also the correct mean
in the less restrictive thin-gas limit near equili-
brium when the boundaries are isothermal and
radiate isotropically, which is the situation we
treat here. (This special case was implied in [7]
immediately following equation (16).) It is not
surprising that the matching of the preceding
paragraph introduces &;p, as the mean co-
efficient, since we have weighted the approxi-
mation in favor of small values of nyz and the
gas will always appear thin for sufficiently small
values of this product.

If we wish to emphasize the radiative field
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at larger distances, we can match the exponential
function to the area and first moment of F,.
In view of the equivalence noted previously,
the area matching leads to the same result as
in equation (31a). The matching of the first
moment gives, after introduction of E,(,z)
from equation (8) and interchange of the order
of integrationT,

X
fmoze ™™ dz
0

1 , 9B,
" By, J dT,
,, #0

&

X U’[Jz exp (—a,,z/D) d;]dl}dv

o
Carrying out the integration then leads to

my 1 1 dB,
n2 3B, s

dv. (32)

To | o_z:;dTO

This and equation (31a) give finally for this
matching

Yo

m i
;(‘:- =5 (33a)
and
31?3 dy
no =3 —-——lic%f’-—— = g, e dy
S %, aT |, (33b)
e

The quantity &, the Rosseland mean over
restricted ranges of frequency, goes over into
the ordinary Rosseland mean ag, in the situation
where a,, is nonzero for all v. Again in [7], the
Rosseland mean evaluated at the reference
condition is shown to be the correct mean to
use for a thick gas near equilibrium.

t The interchange in the order of integration here is valid
only when the integration over v has been limited to the
frequency regions for which «, # 0. The correct evaluation
of the right-hand side of this equation could be obtained for
an integration over all v, but care is then needed in evaluating
the divergent inner integral when o, is zero. This is one of
the reasons for introducing the integration convention {10).

That this matching introduces a Rosseland
mean absorption coefficient might be expected,
since it emphasizes the large values of nyz
and the gas will always appear optically thick
for sufficiently large values of this quantity.
This matching may not be appropriate when a
radiating boundary at x = 0 plays a major
role in the problem, since it will predict the
heat addition to the gas incorrectly at small
values of nyx. This conjecture will have to be
confirmed, of course, by examining specific
problems.

A third possible procedure is to match
the exponential function to the zero-intercept
and first moment of F,. This may be thought of as
a compromise between the two previous pro-
cedures. The two parts of this matching have
been carried through in the course of the above
(i.e. my = Fy(0) = &,p, and equation (32)). The
combined results give finally

my 1 tQLP &,, nonzero 1 Aprp *
e L) I e —2) 4
- (o) e () ow

forall v 3 Rn
and
ny = (38Lp,r,)* ™ f:r":,’,v“’ (opp,or,)t.  (34b)
For the special situation in which «,, is non-

zero for all v, the results (34a, b) have also been
obtained in [7] by arbitrarily requiring that the
linearized grey differential approximation for
the net radiative heat flux in three dimensions
take on the correct thick- and thin-gas limits,
Traugott [8] had previously introduced this
kind of argument to incorporate spectral pro-
perties into the corresponding nonlinear equa-
tions.t In [7] the following differential equation
for the net radiative flux (written here in one
dimension) was obtained by this procedure:

2 T/

(36 7 — 160 TO“LPD(;

Comparison of this equation with equation

3a”°aRoqR’ = O.

T Both papers can be generalized by introducing means
over restricted frequency rangers, as in the present formu-
lation.
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(27) in the situation where a,, is.-nonzero for all v
results in the values for m, and n, given by the
relations (34a, b).

The above matching procedures are the three
most obvious of the many that could be devised.
It is not possible without further study to say
which of the three gives the best matching or
to recommend the use of one particular pro-
cedure. By the assumption of suitable functional
forms for a,, closed-form integration of the
exact transmission functions may be possible.
If so, an analytical comparison of the trans-
mission functions and their exponential approxi-
mations could be made. If not, the approach
must be, as stated earlier, to compare the
exponential approximation with the results
from numerical evaluation of the transmission
functions for specific gases and specific values of
T, and p,. The first two matchings are appealing
because the matching of the zero-intercept of
F, (or equivalently the area of F,) leads to the
result my/n, = 3. We then have no inconsistency
in the radiative boundary conditions (28) and
(30). The third matching does not have this
property. It does, on the other hand, make the
resulting differential equation for §% satisfy
the correct thick- and thin-gas limits.

5. EQUATIONS OF RADIATIVE ACOUSTICS

We can now couple the equations for ¢~
with the linearized equations of gas dynamics.
For an imperfect gas in local thermodynamic
equilibrium, the one-dimensional unsteady-flow
equations, linearized about a uniform, equili-
brium state of rest, can be written as

ap’ o'
ot TP =0
ouw op
p()-gt—_*"é-;_os
oo
o ot ot ox’

W =nh,p +h,p,
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and

=T+ T,

where t is the time and «, k', p’, and p’ are the
perturbations in the velocity, specific enthalpy,
pressure, and density, respectively. Radiative
pressure and energy density have been neglected
in writing these equations. The final two equa-
tions contain the linear terms from Taylor’s-
series expansions of the general equilibrium
state functions h=h (p,p) and T = T(p, p);
the subscript notation denotes partial differentia-
tion of these functions, for example,
By, = (Oh/0p), o

To aid in the interpretation of the later
equations, we introduce the following normali-
zation:

p= P!/PO, T= T’/}::)’ p= P’/Pt)s = “’/aso,
H = h'/Cpb’I}): qR = qR‘/pOaSochT(v)b (35)
E=nex, and 1= nyagt.

Here ag, is the isentropic speed of sound defined
hpo

by
a2 (ap) e,
ap S lg hpo - l/p(;

and ¢, is the specific heat at constant pressure as

given by
oh
 =\37/,

These quantities are defined here for a gas in
local thermodynamic equilibrium and are not
to be confused with the corresponding quantities
as defined for a chemically frozen gas (cf. [3],
p- 257 for definition of the frozen and equilibrium
speeds of sound).

With the normalization (35), the gas-dynamic
equations become

op  oa

_
0 T

Po

% =0, (36)

0u Po aP
+ =0, 37
0o ¢ D
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oh  po 0P ot
CPo O‘g - ‘p—;‘a—r = - CPOTO “a?, (38)
CPOTE)E = pohpoﬁ + Pohpoﬁ (39)
and
LT =pTop + poTpp.  (40)

The differential equation (27) for the net radia-
tive heat flux and the radiative boundary
condition (28) become

*g° 16 oT

3 gmgBoce 1 =0 @D
and
og* _R] 6
et = - (T, — T, _ ,
[86 o g Bol 1 T T Z )

where the nongrey Boltzmann number is defined
by

ﬁ — pOaSngo «,, HONZEro pGaS(ych

0= (n/4) E;; forall s (7/4) By,

- pOaSOCpo = BO
oT3

(43)

If we introduce the normalized perturbation
potential @ defined by u = 8¢/0f and (py/
Poad,) b = —0@/0t (thereby satisfying equation
(37)) and eliminate p, h, T, and §® between the
remaining equations (36) through (41) (cf. [3],
p- 497), we obtain the following fifth-order
partial differential equation:

2
aso

16
—n:_— t+_—“_——*wt—_
O = Pdeee * o) B, (a%o o "’“L
- (@tt - 5{{)‘: =0. (44)

The subscripts £ and t denote partial derivatives,
and the isothermal speed of sound ay is defined

by
op
2 - [
o = <ap>r

From equation (42), we can in a similar manner
write the radiative boundary condition on
T = T(0)/T; as

== T;’o/Tl;o'

¢}
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dT(1) _ (no/my) Bo
dt 16

[(%)g - VVS}r'{=0

+ [0 = Wrlle=0r  (45)

where we have for brevity introduced the
notation
W{? = @n - @{;
and
_ %
WT = T(Prr - (P§¢~
ar,

Values for my and n, need not be specified
in order to carry out generalized solutions
based on equations {44) and (45). This is so
because the dimensionless parameters Bo and
ny/m, always appear as a product and can
therefore be included into a single new para-
meter K = (ny/m,) Bo. The ratio ny/m, appears
with the Boltzmann number as a consequence
of the nongrey substitute-kernel approximation.

The nongrey Boltzmann number Bo retains
the same physical meaning that the ordinary
Boltzmann number Bo (see equation (43))
carries throughout the literature. Its interpreta-
tion, however, is slightly different owing to the
fact that the present radiative model may repre-
sent a gas that emits and absorbs radiant energy
in finite intervals of frequency. If we multiply the
numerator and denominator of definition (43)
by T’ we obtain

Bo PolseCpol
(n/4) By, T’

which can be interpreted as a measure of the
ratio of the energy flux of the wave to the radiant
energy flux due to spontaneous emission from
the general nongrey gas. The definition of Bo,
when written in the above manner, contains
initsdenominator theterm(n/4) B, T = o T3T',
which characterizes the spontaneous emission
only in the special situation where «, is nonzero
for all v (see equation (43)).

As with the radiative equations in section 3,
the acoustic equation (44) and radiative bound-
ary condition (45) have the same structure as
the corresponding equations for a grey gas
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(cf. 3], p. 491 and 499). They differ only in the
definitions of the normalized independent vari-
ables and the Boltzmann number. Solutions
already carried out with the exponential approxi-
mation for a grey gas can be reinterpreted
accordingly for a nongrey gas by replacing the
grey-gas parameters ao,, ba, and Bo by their
nongrey counterpartsm,, n,, and Bo, respectively.

6. CONCLUDING REMARKS

The above development depends critically
on the linearization of the equation of radiative
transfer. There is a possibility, however, that
the basic ideas may carry over to the nonlinear
problem. Such generalization would entail cer-
tain restrictions on a, and B,, so that the inte-
grations over frequency and position could
again be carried out independently. These
restrictions might do less violence to reality
than the drastic assumption of a grey gas, thus
leading to a more accurate description of
radiative transfer for use in analytical studies.

457

ACKNOWLEDGEMENTS

The authors are indebted to Dale L. Compton of NASA,
Ames Rescarch Center and Robert Tripodi of Stanford
University for valuable criticism and discussion. The work
was supported by the U.S. Air Force Office of Scientific
Research under Contract AF49(638)-1280.

REFERENCES

1. H. R. LonG and W. G. Vincenti, Radiation-driven
acoustic waves in a confined gas, Phys. Fluids 10, 1365~
1376 (1967).

2. A. C. CoGLEY, An approximate method for analyzing
nonequilibrium acoustic phenomena with application to
discrete radiation-driven waves, Ph.D. Dissertation,
Stanford University (1968).

3. W. G. Vincenti and C. H. KRUGER, Jr., Introduction to
Physical Gas Dynamics. John Wiley, New York (1965).

4. S. E. GiLLgs, Flow with coupled radiative and vibrational
nonequilibrium in a diatomic gas, Ph.D. Dissertation,
Stanford University {1968).

5. B. S. BaLpwin, Jr., The propagation of plane acoustic
waves in a radiating gas, NASA TR-138 (1962).

6. 1. L. RYyHMING, Wave motion in a radiating simple
dissociating gas, 4144 JI 3, 1348-1350 (1965).

7. A. C. CooLEY, W. G. ViINcENTI and 8. E. GiLies, On the
differential approximation for radiative transfer in a
nongrey gas near equilibrium, A744 J16, 551-553 (1968).

8. S. C. TraucoTT, Radiative heat-flux potential for a
nongrey gas, AIAA JI 4, 541-542 (1966).

Résumé—Les équations pour le transport par rayonnement dans des géométries 4 plaques paralléles
sont etudiées pour un gaz non gris prés de ’équilibre. On suppose que les processus moléculaires s’effectuent
avec un équilibre thermodynamique local. En supposant que les déviations & partir d’un état de référence
d’équilibre de rayonnement sont faibles, on linéarise 'équation du transport par rayonnement. Ceci permet
d’effectuer indépendamment les intégrations nécessaires par rapport 4 Pespace et 3 la fréquence spatiale.
Par analogie avec les procédés du gaz gris, une approximation de noyau de remplacement non gris (ou
exponentiel) est alors faite pour certaines fonctions de transmission intégrées par rapport 4 la fréquence
qui se trouvent dans les expressions des flux de chaleur. Les propriétés spectrales apparaissent dans la
formulation dans deux fonctions, qui sont introduites par 'approximation et qui dépendent de I'état de
référence du gaz. Ces fonctions sont obtenues par des procédés de jonction analytique, qui définissent les
coefficients d’absorption moyens linéarisés de Planck et de Rosseland ayant un sens physique pour un
gaz général non gris. Pour 'emploi en rayonnement acoustique, 'équation différentielle pour le flux de
chaleur est couplée avec les équations linéarisées de la dynamique des gaz. Les équations résultantes pour
un gaz non gris ont la méme structure mathématique que les équations pour un gaz gris, qui sont maintenant
comprises comme cas spécial. Les résultats des solutions existantes du gaz gris peuvent donc étre réinter-
prétées a I'aide d’un gaz non gris par une normalisation appropriée.

Zusammenfassung—Die Gleichungen fiir den Wirmeaustausch durch Strahlung in geometrisch plan-
parallelen Anordnungen sind untersucht fiir ein nicht graues Gas in der Nihe des Gleichgewichts. In den
molekularen Prozessen wurde lokales thermodynamisches Gleichgewicht vorausgesetzt. Unter der
Annahme, dass nur geringe Abweichungen von einem Bezugszustand des Strahlungsgleichgewichts vor-
kommen, wurde die Gleichung fiir den Wirmeaustausch durch Strahlung linearisiert. Dies erlaubt eine
unabhingige Durchfithrung der erforderlichen Integrationen iiber den Raum und iiber die Spektralfrequenz.
In Analogie zu den Rechenverfahren beim grauen Gas wurde dann beim nicht-grauen Gas eine Ersatz-
kernfunktion- (oder exponentielle) Niaherung gemacht fiir bestimmte itber die Frequenz integrierte
Ubertragungsfunktionen, die bei den Ausdriicken fiir die Wirmestrome auftauchen.

Die spektalen Eigenschaften erscheinen bei diesem Ansatz in zwei Funktionen, die durch die Niherung
eingefiihrt wurden, und die vom Bezugszustand des Gases abhingen. Diese Funktionen wurden durch
analytischen Vergleich von Prozeduren ermittelt, die linearisierte mittlere Absorptionskoeffizienten
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(ahnlich den Planck- und Rolleland’schen Koeffizienten) definieren, die fiir ein allgemeines nicht-graues

Gas physikalisch bedeutsam sind. Zur Anwendung in der Strahlungsakustik wurde die Differentialgleichung

fiir den Wirmestrom gekoppelt mit den linearisierten Gleichungen der Gasdynamik. Die fiir das nicht-

graue Gas resultierenden Gleichungen haben die selbe mathematische Struktur, wie die Gleichungen

fiir das graue Gas, die nun als Spezialfall enthalten sind. Die Ergebnisse der existierenden Losungen fiir

das graue Gas kdnnen deshalb durch zweckmissige Vorschriften fiir das nicht-graue Gas uminterpretiert
werden.

AnHOTAMHA—W3ydaTcA ypaBHEeHMA JYYUCTOTO MepeHoCa B INIOCKOMAPAJIIETHHX Teo-
MeTPHUAX JJIA Heceporo rasa B COCTOAHMM; OJIM3KOM K paBHOBecHoMy. Ilpepmomaraercs, 4To
B MOJIEKYJIAPHHX NPOIeCCax AMEeT MeCTO JIOKAJIbHOEe TepMOAMHAMKYeckoe papHoBecue. [Ipn
JONYIMEeHUH, YTO OTHJIOHEHMA OT HA4YaJIbHOTO COCTOAHUA JIYYHCTOr0 PABHOBECHA HEBEJMKH,
JINHEAPU3UPOBAHO yPaBHEHME JYYHUCTOTO IEPeHoCa. JTO NO3BOJUIO IPOBECTH HABABUCHMOE
HHTErPHPOBAHME IO NPOCTPAHCTBY H CIEKTpalbHON dacrore. Ilo aHamorum ¢ MeTOXUKOM,
HCTIONIb3YeMOolt [JIA Ceporo rasa, AJIA HeCeporo rasa IpH MCHOJIb30BAHMM ANNPOKCHMAUHV C
3aMeHOH Axpa (MiM KCIOHEeHINAIbHOM) 3aTeM HAXOAUTCH Npeo0pas3oBaHue JJIA OIpejelleH-
HBIX Y4CTOTHO-MHTErpuUpyeMHX (yHKuuit, KOTODHE BCTPEYAIOTCA B BHIPAKEHUAX NJIA TEHJIO0-
BRX NOTOKOB. CIEKTPAJbHHE CBONUCTBA NpeAcTaBieHH B (opmyne NBYMA (YHKIMAMH,
KOTOpHE ABJAITCA Pe3yJIbTaToM INPUHATOM aNIIPOKCHMAIMM M KOTODHE 3IBUCAT OT HAYallb-
HOTO COCTOAHMA rasa. OTH PyHKIMH HAXONATCA METOHAMH AHAINTHYECKOM TOATOHKH, KOTOPHE
onpeeJdIoT JHHeapU3NpOBaHHLE cpefHue KoafpumuenTst abcop6umm Ilmanka, Poccnanga,
uMeroupe Ppusndeckuit CMBCI 7 0GEYHOrO Heceporo rasa. JlJA HCIOAB30BAHUA B JyYUCTOH
axycruke, muddepeHIMATbHOE YPaBHEHHE TEILIOBOIO OTOKA 00beIUHACTCH ¢ IMHeapU3upo-
BAHHHMM YPABHEHHWAMHU rasofnHaMuxu. [loxyyaemsle B peayabrare ypaBHeHHA IJs HECEPOTO
rasa MMeioT Ty jKe MAaTeMaTHYeCKYI0 CTPYKTYPY, YTO M YaBHEHHA A CEPOro rasa, KOTOpHe
Teliepb ABIAITCA YACTHHIM ciaydyaeM. PeaydbpTaTH MMeOIMXCA DeIUeHHH IJIA Ceporo rasa
MOKHO IOSTOMY BHPAasuTh C IOMOIIBIO BHIPAXKeHHMI [JIA HECEPOTO0 I'a3a NMYTeM COOTBET-
CTBYIOLIE HOpMAaJIM3aIuu.



